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sense, the circle would not be squarable (at least by this method). At any rate, that is the
best I can reconstruct Leibniz’s reasoning. His own words are as follows:

Hence now at last there seems to be a way open for a marvellous demonstration that
it is impossible for there to be a quadrature of the circle of the kind we are seeking:
namely one which would express the relation by an equable equation. And in order
for this to be done, it must be shown that the diameter and the side [I presume he
means diameter and circumference, or circumference and side] do not have even an
infinitely small common measure, even in the kind of line which is as an irrational
root, whether quadratic or cubic —e.g. the side of a double cube  [3√2]— or of some
higher power. (497-498)

The idea here appears to be that the infinitely small common measure involved in the kind
of quadrature Leibniz is seeking would have to be a linear common measure. For he
immediately adds: “Hence here we have a splendid use for demonstrations about
incommensurables of linear [quantities], for they can also be carried over to the infinitely
small, which those of arithmetic cannot.” (498) Therefore, Leibniz concludes, one can prove
the impossibility of squaring a circle in this sense of “expressing the relation [between
circle and square] by an equable equation” if one can show that “diameter and side” do not
have even (what amounts to) an algebraic irrational root. And “supposing this, it follows that
the magnitude of a circle cannot be expressed by an equation of any degree.” (498) In
other words, p will be transcendental.

Such a proof, however, would only be as strong as its foundations. Here it depends on
the idea of an ordinate y being decomposable into an infinity of infinitesimal differences,
dy. As we know, Leibniz claimed that since dy is incomparably smaller than y, y + dy is
essentially equal to y. This, I believe, explains the following caveat, recorded by Leibniz as
a marginal note to the above claims:

This reasoning, which seems to prove that a circle is not squarable, is not to be relied
upon as long as it has not been proved that the diagonal cannot —at least, by
subtracting an infinitely small quantity— be rendered commensurable to the side,
assuming an infinitely small measure. And the same holds for the other roots. (498)

Of course, Leibniz has not given the demonstration in question, and I may not have divined
his reasoning accurately. It would be especially desirable to get a more certain reading of
how his assumption about the “equable equation” is related to the idea of linear
incommensurables. Nevertheless, Leibniz’s conjecture that a proof might be possible that p
cannot even be expressed as the irrational root of “an equation of any degree” seems to
have anticipated by some 118 years Legendre’s conjecture that it “cannot be the root of an
algebraic equation with a finite number of terms, whose coefficients are rational”.
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However, Leibniz claims to have shown elsewhere that “a curvilinear figure of the above
kind is congruent with the circle”. But this would mean that the square and circle are
commensurable, a result he considers “absurd” (497).

 Immediately Leibniz spots the reason for this “error”: his quadrature of the circle
depends not on the ordinates of each figure being equal to a finite number of finite
common measures, but to an infinite number of infinitesimal common measures. Thus the
ratio of each pair of lines does not have to be “as finite number to finite number”, but can
be “as infinite number to infinite” (497). Leibniz explains: “Two infinite numbers which are
not as two finite numbers can be commensurable, namely if their greatest common measure
is a finite number —for instance, if both are prime.” Correspondingly, the figures can still
be called “commensurable” in the extended sense of having an infinitesimal common
measure, if each is an infinite prime number of infinitesimal common measures.

Thus there are two cases to be considered: circle and square could be commensurable
(i) in the standard sense of possessing a common measure that is “finite and ordinary, (in
which case they would be as finite number to finite number, which I believe to be
completely irreconcilable with approximations)”; or (ii) in an extended sense of possessing
a common measure that is “infinitely small, which I believe to be necessary” (497).

The first alternative, in our terms that p is rational, which Leibniz had already told
Oldenburg was “probably impossible” in 1674,8 is here dismissed as “completely
irreconcilable with approximations”. This undoubtedly refers to the approximations of 4/p
by Wallis (in terms of an infinite product) and Brouncker (in terms of an infinite continued
fraction).9

What is of interest to us here, though, is the second alternative, where the circle and
square could be “commensurable” in the sense of having an infinitesimal common measure.
Leibniz has shown that, under the hypothesis of an actual infinitesimal common measure,
the area under the curve is to the rectilinear area as the infinite lines representing the
sums of their ordinates. As his figures show, these lines would then be in the ratio of the
finite lines LM and NP. But his assumption that these lines would be as finite number to
finite number is too strong: the circle would be squarable if these lines stood in the ratio of
some algebraic irrational root (say, √2) to 1, like the diagonal and side of an isoceles right
triangle. Thus if it could be shown that they are not “commensurable” even in this extended
                                                
8 See Joseph E. Hofmann, Leibniz in Paris: 1672-1676, (Cambridge: CUP, 1974), p. 95; Leibniz to
Oldenburg, 16 October 1674.
9 See Hofmann, op. cit., p. 53. Leibniz was also aware that although the “rational quadrature” of the
hyperbola —that is, the expression of the ratio between the area under a hyperbola and that under
the corresponding square as a rational fraction— had been accomplished by Mercator and Brouncker,
no one had managed this for the circle.
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Suppose, he says, we have two figures, “a rectilinear one QRST, the other a mixed
curvilinear one QTVQ, of the same height QT.” Both figures are now conceived as
polygons, in accordance with Leibniz’s dictum that every curve is expressible as an
infinitangular polygon. The areas under the curve are now “divided into an infinity of
infinitely small squares” of equal size, such as anbg in the curvilinear figure, and XQZU in
the rectilinear figure. Leibniz drew his axes the other way round from us, so that the height
QT is the abscissa, and the ordinates ZY and Zw are from it to the left and right,
respectively.
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Now comes an assumption about the “equability” of the equation of the curve:

let us assume any arbitrary curvilinear ordinate, such as Zw, to be in rational
proportion to the corresponding rectilinear ordinate, ZY, which will be possible if
the equation of the curve allows it; then the number of infinitely small squares of
one figure will also be commensurable with the number of squares of the other, and
if one figure is exhausted by a repetition of squares, then so will the other be. (497)

That is, if the areas (“whole figures”) are exhausted by the squares, they “will also have a
common measure, namely the assumed square”. But since, by hypothesis, the ordinates are in
rational proportion, and the abscissa is common to both, the areas will be commensurable:

If all these ordinates are extended in a straight line, i.e. the squares are taken
directly, the number of them in the rectilinear figure will be to the number in the
curvilinear one as one infinite commensurable line to another, and so as we showed
above, as finite number to finite number. (497)
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Suppose there are actual infinitesimals. Here the primary sense of ‘actual’ is that of a
real as opposed to potential part of the continuum; in this sense, a finite line would be
composed of an infinite number of infinitesimal linelets. This fits with Leibniz’s previous
analysis of the continuum in his New Physical Hypothesis (1671), as well as his definition of
magnitude at that time as “the multiplicity of parts”5 of a thing. However, since that time, he
had had occasion to emend his definition of magnitude, noting that this definition is
“worthless, unless it is established that the parts are equal to one another, or in a given
ratio” .6 This applies equally to infinitesimal parts: it’s no good positing that the
hypoteneuse and sides of a right-angled isoceles triangle are composed of infinitesimal
lines unless the infinitesimals in each case are in the ratio of √2 to 1 (if all infinite
numbers are considered equal) or equal (in which case the infinite numbers will be in the
ratio of √2 to 1). This fact will be of relevance in what follows.

Now if such an interpretation can be made to work, then infinitesimals could be
“actual” in a stronger sense, that is, parts of actually existing continuous wholes, not just
mathematical entities. A circular atom, for example, could exist, if there were a definite
(but infinite) number of infinitesimals across its diameter, and another definite but
infinite number of infinitesimals around its circumference. But then the circumference
and the diameter would be in a definite ratio: they would be commensurable in the sense of
having a common measure, the assumed infinitesimal. Hence Leibniz’s remark that, if
“matter is actually divided into an infinity of points”, it will follow that “any part of matter
is commensurable with any other.” In this connection, he continues, “I should examine the
line of reasoning I have used elsewhere, according to which it seems to follow that a circle,
if it exists, has a ratio to the diameter as one number to another”.7  This, on my
reconstruction, is precisely what Leibniz is about in “Infinite Numbers”, to the
consideration of which I now turn.

That paper begins with Leibniz clarifying some key terms, such as ‘homogeneous’, and
‘commensurable’, applied to infinite numbers and lines. Two homogeneous infinite lines
AB... and CD..., are said to be commensurable if they have a finite ratio, represented by the
ratio between the finite commensurable lines LM and NP (op. cit., p. 496). He then proceeds
in the next paragraph to make use of this idea of commensurable infinite lines to sketch a
demonstration of the quadrature of the circle, given certain assumptions.

                                                
5 See his “On the Nature of Corporeal Things” of 1671: “Magnitude is the multiplicity of parts” (A
VI ii n452).
6 See his remarks in “On Magnitude” (A VI iii n.64: 482).
7 “On the Secrets of the Sublime” (A VI iii n60: 473).
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years in Paris.3 Although it contains perhaps rather too much mathematics for most
historians of philosophy, its very interesting philosophical content led the editors of the
German Academy edition to classify it among Leibniz’s philosophical, rather than his
mathematical, manuscripts. Perhaps this explains why it did not come to the notice of such
mathematicians as Joseph Hofmann, who wrote the definitive account of Leibniz’s
mathematical inventions in his Paris years. Still, it seems to be of some historical
significance, not only for the conjecture itself, but also because Leibniz makes it in the
course of an analysis of the nature of magnitude that leads him to conclude that not only
infinitesimals, but mathematical figures such as circles and hyperbolae, are mere fictions
or enuntiationum compendia (abbreviations for expressions) —some 25 years earlier than
he is supposed to have come to this position.

The paper begins and ends with considerations involving infinite number (thus
explaining the title supplied it by the editors), although inbetween Leibniz manages to
discuss an impressively diverse set of subjects: impossibility proofs of squaring the circle;
the fictional status of the circle, viewed as a limit of a sequence of polygons; whether
angles of contact are actual infinitesimals; a new definition of angle as a fictitious limiting
entity; how the mind can sense a perfect circle if there is no image in it of one; how some
things can be so small that, although we sense them in our consciousness, we cannot
remember them; whether there can be a midpoint in an unbounded universe, how unbounded
material things would have to move discontinuously, or rather, could not be perfectly
considered without considering “the mind in them”, whether infinite series can be said to
have an infinitieth term; a reconsideration of the ratio of incommensurable lines, leading to
a redefinition of magnitude; the definition of the sum of a converging infinite series; and
finally, the thesis that an infinity of things is not one whole.

As one might have guessed, these subjects were not as heterogeneous in Leibniz’s mind
as they are to a twenty-first century understanding. A clue to some of the connections is
provided by certain remarks of his in another unpublished paper written two months
previously (“Secrets of the Sublime” of February 1676)4 in which he was actively debating
the ontic status of infinitesimals. For there Leibniz had proposed that matter’s being
actually divisible into points or actual infinitesimals entailed that any part would be
commensurable with any other part; and that this in turn would appear to entail the
squarability of the circle, “if it exists” (ibid, p. 474). If I am right, this reasoning
constitutes the premise of the investigation he undertakes in ”Infinite Numbers”. Let me try
to make it more explicit.

                                                
3 A VI iii n69: 495-504.  In my referencing in this paper, ‘A’ denotes the Akademie edition of
Leibniz’s works, Gottfried Wilhelm Leibniz: Sämtliche Schriften und Briefe, ed. Deutsche Akademie
der Wissenschaften (Darmstadt and Berlin: Akademie-Verlag, 1923-), followed by series and piece
number, then page number. All translations are from my Leibniz: The Labyrinth of the Continuum,
forthcoming in Yale University Press, 2000.
4 A VI iii n60: 472-477.
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The transcendentality of p and Leibniz’s philosophy of mathematics

Although mathematicians had believed for centuries that p must be irrational, this was not
proved until 1761, by J. H. Lambert. But doubts about the rigor of his proof left the result in
question until a new more rigorous proof was achieved by the great French mathematician
Adrien-Marie Legendre in his Élémens de géométrie of 1794. After giving it, Legendre
made the following remark:

It is probable that the number p is not even contained among the algebraic
irrationalities, i.e. that it cannot be the root of an algebraic equation with a finite
number of terms, whose coefficients are rational. But it seems to be very difficult
to prove this strictly.1

That is, if we call algebraic any number, real or complex, that is the root of an algebraic
equation

a0xn + a1xn-1 + a2xn-2 + . . . + an-1x + an = 0, (ai rational),

then some irrationals, like ÷2 and 4 – ÷3i, are algebraic, and some, like e, are not. Such non-
algebraic irrationals are called transcendental. Thus Legendre’s conjecture just quoted is
that p is such a transcendental number. The distinction itself, as Morris Kline notes, “was
recognized by Euler at least as early as 1744”2 when he conjectured that logab (with a, b
both rational) must be either rational or transcendental. But the existence of transcendental
numbers was not proved until 1840, by Joseph Liouville, and, despite the efforts of
Legendre, Liouville and Hermite (who proved that e is transcendental), the proof of the
transcendentality of p was not achieved until 1882, by Ferdinand von Lindemann.

So it is of some interest to see Leibniz making what seems to be the same conjecture as
Legendre—that p is not expressible as the root of an algebraic equation—in an unpublished
paper of 1676, a century before even its irrationality had been firmly established. My aim
here is to draw attention to this curiosity, as well as to give some account of the reasoning
which led Leibniz to make the conjecture. I cannot pretend, unfortunately, to give a
comprehensive account of how it relates to this work in quadratures, which I believe is
necessary for a full understanding; this will have to wait for another occasion.

The paper in which Leibniz makes the conjecture is an unpublished manuscript,
“Infinite Numbers”, penned at the beginning of April, 1676, towards the end of his four

                                                
1 Quoted from David Blatner, The Joy of Pi, London: Penguin 1997, p. 85.
2 Morris Kline, Mathematical Thought from Ancient to Modern Times, vol. 2, Oxford: OUP 1972, p.
594.


